Library Coquelicot.AutoDerive

This file is part of the Coquelicot formalization of real analysis in Coq: http://coquelicot.saclay.inria.fr/
Copyright (C) 2011-2015 Sylvie Boldo
Copyright (C) 2011-2015 Catherine Lelay
Copyright (C) 2011-2015 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Require Import Reals.
Require Import Rcomplements Hierarchy Derive RInt RInt_analysis Derive_2d Continuity ElemFct.
Require Import mathcomp.ssreflect.ssreflect mathcomp.ssreflect.ssrbool mathcomp.ssreflect.seq Datatypes.

Reflective tactic for solving goals of the form derivable_pt_lim


Fixpoint Rn n T :=
  match n with
  | OT
  | S nR Rn n T
  end.

Inductive bop :=
  | Eplus
  | Emult.

Inductive uop :=
  | Eopp
  | Einv
  | Efct : (f f' : R R), ( x, is_derive f x (f' x)) uop
  | Efct' : (f f' : R R) (df : R Prop), ( x, df x is_derive f x (f' x)) uop.

Inductive expr :=
  | Var : nat expr
  | AppExt : k, Rn k R seq expr expr
  | AppExtD : k, Rn k R nat seq expr expr
  | App : expr expr expr
  | Subst : expr expr expr
  | Cst : R expr
  | Binary : bop expr expr expr
  | Unary : uop expr expr
  | Int : expr expr expr expr.

Section ExprInduction.

Hypothesis P : expr Prop.
Hypothesis P_Var : n, P (Var n).
Hypothesis P_AppExt : k f le, foldr (fun e accP e acc) True le P (AppExt k f le).
Hypothesis P_AppExtD : k f n le, foldr (fun e accP e acc) True le P (AppExtD k f n le).
Hypothesis P_App : e1 e2, P e1 P e2 P (App e1 e2).
Hypothesis P_Subst : e1 e2, P e1 P e2 P (Subst e1 e2).
Hypothesis P_Cst : r, P (Cst r).
Hypothesis P_Binary : o e1 e2, P e1 P e2 P (Binary o e1 e2).
Hypothesis P_Unary : o e, P e P (Unary o e).
Hypothesis P_Int : f e1 e2, P f P e1 P e2 P (Int f e1 e2).

Fixpoint expr_ind' (e : expr) : P e :=
  match e return P e with
  | Var nP_Var n
  | AppExt k f leP_AppExt k f le
    ((fix expr_ind'' (le : seq expr) : foldr (fun e accP e acc) True le :=
       match le return foldr (fun e accP e acc) True le with
       | nilI
       | cons h qconj (expr_ind' h) (expr_ind'' q)
       end) le)
  | AppExtD k f n leP_AppExtD k f n le
    ((fix expr_ind'' (le : seq expr) : foldr (fun e accP e acc) True le :=
       match le return foldr (fun e accP e acc) True le with
       | nilI
       | cons h qconj (expr_ind' h) (expr_ind'' q)
       end) le)
  | App e1 e2P_App e1 e2 (expr_ind' e1) (expr_ind' e2)
  | Subst e1 e2P_Subst e1 e2 (expr_ind' e1) (expr_ind' e2)
  | Cst rP_Cst r
  | Binary o e1 e2P_Binary o e1 e2 (expr_ind' e1) (expr_ind' e2)
  | Unary o eP_Unary o e (expr_ind' e)
  | Int f e1 e2P_Int f e1 e2 (expr_ind' f) (expr_ind' e1) (expr_ind' e2)
  end.

End ExprInduction.

Fixpoint apply {T} p : Rn p T (nat R) T :=
  match p return Rn p T _ T with
  | Ofun (x : T) _x
  | S pfun (f : Rn (S p) T) gapply p (f (g p)) g
  end.

Lemma apply_ext :
   T k (f : Rn k T) g1 g2,
  ( n, (n < k)%nat g1 n = g2 n)
  apply k f g1 = apply k f g2.

Definition Derive_Rn n (f : Rn n R) p g :=
  Derive (fun xapply n f (fun iif ssrnat.eqn i p then x else g i)) (g p).

Definition ex_derive_Rn n (f : Rn n R) p g :=
  ex_derive (fun xapply n f (fun iif ssrnat.eqn i p then x else g i)) (g p).

Fixpoint interp (l : seq R) (e : expr) : R :=
  match e with
  | Var nnth R0 l n
  | AppExt k f leapply k f (nth 0 (map (interp l) le))
  | AppExtD k f n leDerive_Rn k f n (nth 0 (map (interp l) le))
  | App e1 e2interp ((interp l e2) :: l) e1
  | Subst e1 e2interp (set_nth R0 l 0 (interp l e2)) e1
  | Cst cc
  | Binary o e1 e2match o with EplusRplus | EmultRmult end (interp l e1) (interp l e2)
  | Unary o ematch o with EoppRopp | EinvRinv | Efct f f' Hf | Efct' f f' df Hf end (interp l e)
  | Int e1 e2 e3RInt (fun xinterp (x :: l) e1) (interp l e2) (interp l e3)
  end.

Inductive domain :=
  | Never : domain
  | Always : domain
  | Partial : (R Prop) expr domain
  | Derivable : nat k, Rn k R seq expr domain
  | Derivable2 : nat nat k, Rn k R seq expr domain
  | Continuous : nat expr domain
  | Continuous2 : nat nat expr domain
  | Integrable : expr expr expr domain
  | ParamIntegrable : nat expr expr expr domain
  | LocallyParamIntegrable : nat expr expr domain
  | And : seq domain domain
  | Forall : expr expr domain domain
  | Forone : expr domain domain
  | Locally : nat domain domain
  | Locally2 : nat nat domain domain
  | ForallWide : nat expr expr domain domain.

Section DomainInduction.

Hypothesis P : domain Prop.
Hypothesis P_Never : P Never.
Hypothesis P_Always : P Always.
Hypothesis P_Partial : p e, P (Partial p e).
Hypothesis P_Derivable : n k f le, P (Derivable n k f le).
Hypothesis P_Derivable2 : m n k f le, P (Derivable2 m n k f le).
Hypothesis P_Continuous : n e, P (Continuous n e).
Hypothesis P_Continuous2 : m n e, P (Continuous2 m n e).
Hypothesis P_Integrable : f e1 e2, P (Integrable f e1 e2).
Hypothesis P_ParamIntegrable : n f e1 e2, P (ParamIntegrable n f e1 e2).
Hypothesis P_LocallyParamIntegrable : n f e, P (LocallyParamIntegrable n f e).
Hypothesis P_And : ld, foldr (fun d accP d acc) True ld P (And ld).
Hypothesis P_Forall : e1 e2 d, P d P (Forall e1 e2 d).
Hypothesis P_Forone : e d, P d P (Forone e d).
Hypothesis P_Locally : n d, P d P (Locally n d).
Hypothesis P_Locally2 : m n d, P d P (Locally2 m n d).
Hypothesis P_ForallWide : n e1 e2 d, P d P (ForallWide n e1 e2 d).

Fixpoint domain_ind' (d : domain) : P d :=
  match d return P d with
  | NeverP_Never
  | AlwaysP_Always
  | Partial d eP_Partial d e
  | Derivable n k f leP_Derivable n k f le
  | Derivable2 m n k f leP_Derivable2 m n k f le
  | Continuous n eP_Continuous n e
  | Continuous2 m n eP_Continuous2 m n e
  | Integrable f e1 e2P_Integrable f e1 e2
  | ParamIntegrable n f e1 e2P_ParamIntegrable n f e1 e2
  | LocallyParamIntegrable n f eP_LocallyParamIntegrable n f e
  | And ldP_And ld
    ((fix domain_ind'' (ld : seq domain) : foldr (fun d accP d acc) True ld :=
       match ld return foldr (fun d accP d acc) True ld with
       | nilI
       | cons h qconj (domain_ind' h) (domain_ind'' q)
       end) ld)
  | Forall e1 e2 dP_Forall e1 e2 d (domain_ind' d)
  | Forone e dP_Forone e d (domain_ind' d)
  | Locally n dP_Locally n d (domain_ind' d)
  | Locally2 m n dP_Locally2 m n d (domain_ind' d)
  | ForallWide n e1 e2 dP_ForallWide n e1 e2 d (domain_ind' d)
  end.

End DomainInduction.

Lemma foldr_prop_nth :
   {T} {P: T Prop} d l n,
  foldr (fun d accP d acc) True l
  P d
  P (nth d l n).

Fixpoint interp_domain (l : seq R) (d : domain) : Prop :=
  match d with
  | NeverFalse
  | AlwaysTrue
  | Partial p ep (interp l e)
  | Derivable n k f leex_derive_Rn k f n (nth 0 (map (interp l) le))
  | Derivable2 m n k f le
    let le' := map (interp l) le in
    locally_2d (fun u vex_derive_Rn k f m (fun iif ssrnat.eqn i m then u else if ssrnat.eqn i n then v else nth 0 le' i)) (nth 0 le' m) (nth 0 le' n)
    continuity_2d_pt (fun u vDerive_Rn k f m (fun iif ssrnat.eqn i m then u else if ssrnat.eqn i n then v else nth 0 le' i)) (nth 0 le' m) (nth 0 le' n)
  | Continuous n fcontinuity_pt (fun xinterp (set_nth R0 l n x) f) (nth R0 l n)
  | Continuous2 m n fcontinuity_2d_pt (fun x yinterp (set_nth R0 (set_nth R0 l n y) m x) f) (nth R0 l m) (nth R0 l n)
  | Integrable f e1 e2ex_RInt (fun xinterp (x :: l) f) (interp l e1) (interp l e2)
  | ParamIntegrable n f e1 e2
    locally (nth R0 l n) (fun yex_RInt (fun tinterp (t :: set_nth R0 l n y) f) (interp l e1) (interp l e2))
  | LocallyParamIntegrable n f e
    let a := interp l e in
     eps : posreal, locally (nth R0 l n) (fun yex_RInt (fun tinterp (t :: set_nth R0 l n y) f) (a - eps) (a + eps))
  | And ldfoldr (fun d accinterp_domain l d acc) True ld
  | Forall e1 e2 s
    let a1 := interp l e1 in let a2 := interp l e2 in
     t, Rmin a1 a2 t Rmax a1 a2
    interp_domain (t :: l) s
  | Forone e sinterp_domain (interp l e :: l) s
  | Locally n s
    locally (nth R0 l n) (fun xinterp_domain (set_nth R0 l n x) s)
  | Locally2 m n s
    locally_2d (fun x yinterp_domain (set_nth R0 (set_nth R0 l n y) m x) s) (nth R0 l m) (nth R0 l n)
  | ForallWide n e1 e2 s
    let a1 := interp l e1 in let a2 := interp l e2 in
     d : posreal,
     t u, Rmin a1 a2 - d < t < Rmax a1 a2 + d Rabs (u - nth R0 l n) < d
    interp_domain (t :: set_nth R0 l n u) s
  end.

Fixpoint is_const (e : expr) n : bool :=
  match e with
  | Var vnegb (ssrnat.eqn v n)
  | AppExt k f lefoldr (fun v accandb (is_const v n) acc) true le
  | AppExtD k f p lefalse
  | App f eandb (is_const f (S n)) (is_const e n)
  | Subst f eandb (orb (ssrnat.eqn n 0) (is_const f n)) (is_const e n)
  | Cst _true
  | Binary b e1 e2andb (is_const e1 n) (is_const e2 n)
  | Unary u eis_const e n
  | Int f e1 e2andb (is_const f (S n)) (andb (is_const e1 n) (is_const e2 n))
  end.

Lemma is_const_correct :
   e n, is_const e n = true
   l x1 x2,
  interp (set_nth 0 l n x1) e = interp (set_nth 0 l n x2) e.

Lemma nth_map' :
   {T1} x1 {T2} (f : T1 T2) n s,
  nth (f x1) (map f s) n = f (nth x1 s n).

Lemma interp_ext :
   l1 l2 e,
  ( k, nth 0 l1 k = nth 0 l2 k)
  interp l1 e = interp l2 e.

Lemma interp_set_nth :
   n l e,
  interp (set_nth 0 l n (nth 0 l n)) e = interp l e.

Lemma interp_domain_ext :
   l1 l2 b,
  ( k, nth 0 l1 k = nth 0 l2 k)
  interp_domain l1 b interp_domain l2 b.

Lemma interp_domain_set_nth :
   n l b,
  interp_domain (set_nth 0 l n (nth 0 l n)) b interp_domain l b.

Definition index_not_const l n :=
  filter (fun v~~ is_const (nth (Cst 0) l v) n) (iota 0 (size l)).

Lemma uniq_index_not_const :
   n l,
  uniq (T:=ssrnat.nat_eqType) (index_not_const l n).

Canonical ssrnat.nat_eqType.

Lemma index_not_const_correct :
   n l (k : nat),
  not (in_mem k (mem (index_not_const l n)))
  is_const (nth (Cst 0) l k) n = true.

Lemma interp_AppExt_set_nth_not_const :
   k f le l n x,
  interp (set_nth 0 l n x) (AppExt k f le) =
  apply k f (foldr (fun v acc iif ssrnat.eqn i v then interp (set_nth 0 l n x) (nth (Cst 0) le v) else acc i)
    (nth 0 (map (interp l) le)) (index_not_const le n)).

Fixpoint D (e : expr) n {struct e} : expr × domain :=
  match e with
  | Var v(if ssrnat.eqn v n then Cst 1 else Cst 0, Always)
  | Cst _(Cst 0, Always)
  | AppExt k f le
    let lnc := index_not_const le n in
    let ld := map (fun eD e n) le in
    match lnc with
    | nil(Cst 0, Always)
    | v :: nil
      let '(d1,d2) := nth (Cst 0,Never) ld v in
      (Binary Emult d1 (AppExtD k f v le),
       And (Derivable v k f le :: d2 :: nil))
    | v1 :: v2 :: nil
      let '(d1,d2) := nth (Cst 0,Never) ld v1 in
      let '(d3,d4) := nth (Cst 0,Never) ld v2 in
      (Binary Eplus (Binary Emult d1 (AppExtD k f v1 le)) (Binary Emult d3 (AppExtD k f v2 le)),
       And (Derivable2 v1 v2 k f le :: d2 :: Derivable v2 k f le :: d4 :: nil))
    | _(Cst 0, Never)
    end
  | AppExtD k f v le(Cst 0, Never)
  | App f e(Cst 0, Never)
  | Subst f e(Cst 0, Never)
  | Binary b e1 e2
    let '(a1,b1) := D e1 n in
    let '(a2,b2) := D e2 n in
    match b, is_const e1 n, is_const e2 n with
    | Eplus, true, _(a2, b2)
    | Eplus, _, true(a1, b1)
    | Eplus, _, _(Binary Eplus a1 a2, And (b1::b2::nil))
    | Emult, true, _(Binary Emult e1 a2, b2)
    | Emult, _, true(Binary Emult a1 e2, b1)
    | Emult, _, _(Binary Eplus (Binary Emult a1 e2) (Binary Emult e1 a2), And (b1::b2::nil))
    end
  | Unary u e
    let '(a,b) := D e n in
    match u with
    | Eopp(Unary Eopp a, b)
    | Einv(Binary Emult (Unary Eopp a) (Unary Einv (Binary Emult e e)), And (b:: (Partial (fun xx 0) e) :: nil))
    | Efct f f' H(Binary Emult a (AppExt 1 f' [:: e]), b)
    | Efct' f f' df H(Binary Emult a (AppExt 1 f' [:: e]), And (b :: (Partial df e) :: nil))
    end
  | Int f e1 e2
    let '(a1,b1) := D e1 n in
    let '(a2,b2) := D e2 n in
    let '(a3,b3) := D f (S n) in
    match is_const f (S n), is_const e1 n, is_const e2 n with
    | true, true, _
      (Binary Emult a2 (App f e2),
       And (b2::(Integrable f e1 e2)::(Forone e2 (Locally 0 (Continuous 0 f)))::nil))
    | true, false, true
      (Unary Eopp (Binary Emult a1 (App f e1)),
       And (b1::(Integrable f e1 e2)::(Forone e1 (Locally 0 (Continuous 0 f)))::nil))
    | true, false, false
      (Binary Eplus (Binary Emult a2 (App f e2)) (Unary Eopp (Binary Emult a1 (App f e1))),
       And (b1::b2::(Integrable f e1 e2)::(Forone e1 (Locally 0 (Continuous 0 f)))::(Forone e2 (Locally 0 (Continuous 0 f)))::nil))
    | false, true, true
      (Int a3 e1 e2,
       And ((ForallWide n e1 e2 b3)::(Locally n (Integrable f e1 e2))::
            (Forall e1 e2 (Continuous2 (S n) 0 a3))::nil))
    | false, false, true
      (Binary Eplus
        (Unary Eopp (Binary Emult a1 (App f e1)))
        (Int a3 e1 e2),
       And ((Forone e1 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
            (Forall e1 e2 (Continuous2 (S n) 0 a3))::
            b1::(Forone e1 (Locally 0 (Continuous 0 f)))::
            ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e1::
            ForallWide n e1 e2 b3::nil))
    | false, true, false
      (Binary Eplus
        (Binary Emult a2 (App f e2))
        (Int a3 e1 e2),
       And ((Forone e2 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
            (Forall e1 e2 (Continuous2 (S n) 0 a3))::
            b2::(Forone e2 (Locally 0 (Continuous 0 f)))::
            ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e2::
            ForallWide n e1 e2 b3::nil))
    | false, false, false
      (Binary Eplus
        (Binary Eplus
          (Binary Emult a2 (App f e2))
          (Unary Eopp (Binary Emult a1 (App f e1))))
        (Int a3 e1 e2),
       And ((Forone e1 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
            (Forone e2 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
            (Forall e1 e2 (Continuous2 (S n) 0 a3))::
            b1::(Forone e1 (Locally 0 (Continuous 0 f)))::
            b2::(Forone e2 (Locally 0 (Continuous 0 f)))::
            ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e1::LocallyParamIntegrable n f e2::
            ForallWide n e1 e2 b3::nil))
    end
  end.

Lemma D_correct :
   (e : expr) l n,
  let '(a,b) := D e n in
  interp_domain l b
  is_derive (fun xinterp (set_nth R0 l n x) e) (nth R0 l n) (interp l a).

Fixpoint simplify_domain (d : domain) : domain :=
  match d with
  | And ld
    let l := foldr (fun d acc
      let d' := simplify_domain d in
      match d' with
      | Alwaysacc
      | And lcat l acc
      | NeverNever :: nil
      | _d' :: acc
      end) nil ld in
    match l with
    | nilAlways
    | d :: nild
    | _And l
    end
  | Forall e1 e2 d
    let d' := simplify_domain d in
    match d' with
    | AlwaysAlways
    | NeverNever
    | _Forall e1 e2 d'
    end
  | Forone e d
    let d' := simplify_domain d in
    match d' with
    | AlwaysAlways
    | NeverNever
    | _Forone e d'
    end
  | Locally n d
    let d' := simplify_domain d in
    match d' with
    | AlwaysAlways
    | NeverNever
    | _Locally n d'
    end
  | Locally2 m n d
    let d' := simplify_domain d in
    match d' with
    | AlwaysAlways
    | NeverNever
    | _Locally2 m n d'
    end
  | ForallWide n e1 e2 d
    let d' := simplify_domain d in
    match d' with
    | AlwaysAlways
    | NeverNever
    | _ForallWide n e1 e2 d'
    end
  | _d
  end.

Lemma simplify_domain_correct :
   d l,
  interp_domain l (simplify_domain d) interp_domain l d.

Class UnaryDiff f := {UnaryDiff_f' : R R ;
  UnaryDiff_H : x, is_derive f x (UnaryDiff_f' x)}.
Class UnaryDiff' f := {UnaryDiff'_f' : R R ; UnaryDiff'_df : R Prop ;
  UnaryDiff'_H : x, UnaryDiff'_df x is_derive f x (UnaryDiff'_f' x)}.

Global Instance UnaryDiff_exp : UnaryDiff exp.
Global Instance UnaryDiff_pow : n : nat, UnaryDiff (fun xpow x n).
Global Instance UnaryDiff_Rabs : UnaryDiff' Rabs.
Global Instance UnaryDiff_Rsqr : UnaryDiff Rsqr.
Global Instance UnaryDiff_cosh : UnaryDiff cosh.
Global Instance UnaryDiff_sinh : UnaryDiff sinh.
Global Instance UnaryDiff_ps_atan : UnaryDiff' ps_atan.
Global Instance UnaryDiff_atan : UnaryDiff atan.
Global Instance UnaryDiff_ln : UnaryDiff' ln.
Global Instance UnaryDiff_cos : UnaryDiff cos.
Global Instance UnaryDiff_sin : UnaryDiff sin.
Global Instance UnaryDiff_sqrt : UnaryDiff' sqrt.

Definition var : nat R.
Qed.

Ltac reify_helper a b z d :=
  match a with
  | Cst _
    match b with
    | Cst _constr:(Cst d)
    | _z
    end
  | _z
  end.

Ltac reify fct nb :=
  let rec reify_aux fct l i :=
    match fct with
    | ?f ?alet e := reify a nb in reify_aux f (e :: l) (S i)
    | _constr:((fct, rev l, i))
    end in
  match fct with
  | var ?i
    eval vm_compute in (Var (nb - i))
  | Rplus ?a ?b
    let a' := reify a nb in
    let b' := reify b nb in
    reify_helper a' b' (Binary Eplus a' b') fct
  | Ropp ?a
    let a' := reify a nb in
    match a' with
    | Cst _constr:(Cst fct)
    | _constr:(Unary Eopp a')
    end
  | Rminus ?a ?b
    let a' := reify a nb in
    let b' := reify b nb in
    reify_helper a' b' (Binary Eplus a' (Unary Eopp b')) fct
  | Rmult ?a ?b
    let a' := reify a nb in
    let b' := reify b nb in
    reify_helper a' b' (Binary Emult a' b') fct
  | Rinv ?a
    let a' := reify a nb in
    match a' with
    | Cst _constr:(Cst fct)
    | _constr:(Unary Einv a')
    end
  | Rdiv ?a ?b
    let a' := reify a nb in
    let b' := reify b nb in
    reify_helper a' b' (Binary Emult a' (Unary Einv b')) fct
  | RInt ?f ?a ?b
    let f := eval cbv beta in (f (var (S nb))) in
    let f' := reify f (S nb) in
    let a' := reify a nb in
    let b' := reify b nb in
    constr:(Int f' a' b')
  | pow ?f ?n
      reify ((fun xpow x n) f) nb
  | appcontext [var ?i] ⇒
    match fct with
    | ?f ?a
      let e := reify a nb in
      let ud := constr:(_ : UnaryDiff f) in
      constr:(Unary (Efct f (@UnaryDiff_f' f ud) (@UnaryDiff_H f ud)) e)
    | ?f ?a
      let e := reify a nb in
      let ud := constr:(_ : UnaryDiff' f) in
      constr:(Unary (Efct' f (@UnaryDiff'_f' f ud) (@UnaryDiff'_df f ud) (@UnaryDiff'_H f ud)) e)
    | _
      match reify_aux fct (Nil expr) O with
      | (?f,?le,?k)constr:(AppExt k f le)
      end
    end
  | _constr:(Cst fct)
  end.

Lemma auto_derive_helper :
   (e : expr) l n,
  let '(a,b) := D e n in
  interp_domain l (simplify_domain b)
  is_derive (fun xinterp (set_nth R0 l n x) e) (nth R0 l n) (interp l a).

Ltac auto_derive_fun f :=
  let f := eval cbv beta in (f (var O)) in
  let e := reify f O in
  let H := fresh "H" in
  assert (H := fun xauto_derive_helper e (x :: nil) 0) ;
  simpl in H ;
  unfold Derive_Rn, ex_derive_Rn in H ;
  simpl in H ;
  revert H.

Ltac auto_derive :=
  match goal with
  | |- is_derive ?f ?v ?l
    auto_derive_fun f ;
    let H := fresh "H" in
    intro H ;
    refine (@eq_ind R _ (is_derive f v) (H v _) l _) ;
    clear H
  | |- ex_derive ?f ?v
    eexists ;
    auto_derive_fun f ;
    let H := fresh "H" in
    intro H ;
    apply (H v) ;
    clear H
  | |- derivable_pt_lim ?f ?v ?l
    apply is_derive_Reals ;
    auto_derive
  | |- derivable_pt ?f ?v
    apply ex_derive_Reals_0 ;
    auto_derive
  end.